
Topic 6
Arrays

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

3

§ Know how to declare, create and use arrays

in Java

§ Use the length instance variable to ensure

that array indexes remain in bounds

§ Be able to pass array element values as

parameters

§ Be able to pass arrays as parameters

§ Be able to write methods which return

arrays

Objectives

4

§ Be able to include arrays as instance

variables

§ Be able to declare, create and initialise

arrays of objects

§ Understand == on arrays

§ Be able to implement simple selection

algorithms (searching an array)

§ Sequential search

§ Binary search

Objectives

5

§ Be able to implement simple sorting

algorithms (sorting an array)

§ Bubble sort

§ Selection sort

§ Insertion sort

§ Be able to define and use multi-

dimensional arrays

Reading

Savitch: Chapter 7

Objectives

6

§ An array consists of a systematically

organised and named sequence of similar

variables - called the elements of the array

§ That is, it is a single name for a collection of

data values, all of the same type

§ The elements are numbered: 0, 1, 2, … and

so on, called the index (or subscript)

§ An array is used in place of a lot of separate

variables (which are of the same type)

Arrays in Programming

Languages

7

§ An array can be small with only 2 or 3

elements (or even zero), or it can be very

large with thousands of elements

§ An array is an ordered collection of data

items

§ Each item has a position (or index)

§ Each item (except first item) has a unique

predecessor

§ Each item (except last item) has a unique

successor

Arrays in Programming

Languages

Visualize Array

• Figure 7.1 A common way to visualize an

array

• Note sample program, listing 7.1

class ArrayOfTemperatures

9

§ An array is a direct access data structure

§ Each item is accessible without going

through any other item

§ Arrays are the most frequently used data

structure

Arrays in Programming

Languages

10

§ Advantages:

§ Saves thinking up the names for a lot of

variables

§ Easy to change/control how many there are

§ Can process them systematically

§ Can be efficiently stored

§ Idea is common to nearly all programming

languages

§ In some programming languages, can pass

the whole array full of values around to

procedures and back

Advantages / Uses of Arrays

11

§ Restrictions:

§ Each item in an array must be of the same

type

§ Variations between programming

languages:

§ Run-time changing of array size allowed?

§ Checking of bounds?

§ Passing to procedures/methods allowed?

§ Returning from procedures allowed?

§ Pass by reference or value?

§ Arrays of objects or just primitive values?

§ Multi-dimensional?

Advantages / Uses of Arrays

12

§ General syntax for declaring an array:

BaseType[] ArrayName= new BaseType[Length];

§ Examples:

// 80-element array with base type char
char[] symbols = new char[80];

// 100-element array of doubles:
double[] readings = new double[100];

//100-element array of Species:
Species[] specimen = new Species[100];

Creating Arrays in Java

13

§ Length of an array is specified by the

number in brackets when it is created with

new

§ it determines the amount of memory allocated

for the array elements (values)

§ it determines the maximum number of elements

the array can hold

§ storage is allocated whether or not the elements

are assigned values

Creating Arrays in Java

14

§ The array length is established when the

array is created

§ It is automatically stored in the (read-only)

instance variable length, and cannot be changed

§ An array is a special kind of object in Java

§ Eg: declare an array of ints:

int[] mark;

// mark is now an “array of int” type variables, with

// null reference

Creating Arrays in Java

15

§ Create an array of int “objects” of a certain

length:

mark = new int[7];

// the variable mark now refers to an array of seven ints

// each one initialised to the default int value of zero

§ OR, declare and create:

int[] mark = new int[7];

§ Data can now be stored in the array as:

mark[0] = 85;

Creating Arrays in Java

16

[0] [1] [2] [3] [4] [5] [6]

mark: 85 70 50 62 39 92 54

Creating Arrays in Java

17

§ Later on may be make mark refer to

another array object:

mark = new int[9];

§ Note: This does not change the size of an array

§ It just makes the variable refer to a new, bigger

array

§ The old array is still there, the same size as

before, elsewhere in memory

Creating Arrays in Java

18

§ Do somethings with the first element in the

array:

mark[0]= 30;

System.out.println(mark[0]);

mark[0]= keyboard.nextInt();

System.out.println(mark[4+1-5]);

§ Do somethings with the last element in the

array:

mark[8]= 72;

System.out.println(mark[8]);

Creating Arrays in Java

19

§ Output all elements of the array:

for (int i=0; i<9; i++)

System.out.println(mark[i]);

§ Note that array subscripts use zero-

numbering. That is:

§ the first element has subscript 0

§ the second element has subscript 1

§ the nth element has subscript n-1

§ the last element has subscript length-1

Creating Arrays in Java

20

§ Arrays are sort of objects and have a

publically accessible (but read-only)

instance variable length, which gives the

number of elements in the array. Eg:

mark.length

§ So a very common form of loop is:
for(index=0;index<mark.length;index++) {

System.out.println(“Enter the ”

+ index + “th mark:”);

mark[index] = keyboard.nextInt();

}

Array Lengths

21

§ Note: this form of loop is often used to give

initial values to the elements of an array but

there is a special way of initialising a small

array with a list of values

§ This is done at the time the array is

declared:

int[] coins = {5,10,20,50,100,200};

// implied length = 6

double[] data = {4.5,4.7,5.1,5.5};

// implied length = 4

Array Lengths

22

§ Subscript out of Range Error:

§ Note that if the index (inside the [brackets])

evaluates to less than zero, or greater than or

equal to the length of the array, then the

program will suffer a runtime error:

ArrayIndexOutOfBoundsException

Array Lengths

23

Example

/** Read temperatures from the user and shows which are

above and which are below the average of all the

temperatures. From Savitch Listing 7.1 */

import java.util.Scanner;

public class ArrayOfTemperatures2 {

public static void main(String[] args) {

Scanner keyboard = new Scanner(System.in);

System.out.println("How many temperatures

do " + "you have?");

int size = keyboard.nextInt();

double[] temperature = new double[size];

24

Example

// Read temp’s and compute their average

double sum, average;

System.out.println("Enter " + temperature.length + "

temperatures:");

sum = 0;

for(int i = 0;i<temperature.length;i++) {

temperature[i] = keyboard.nextDouble();

sum = sum + temperature[i];

}// end for

average = sum/temperature.length;

System.out.println(“Avg temp is " + average);

25

Example

// Display each temp + its relation to avg

System.out.println("The temperatures are");

for (int i = 0;i<temperature.length;i++) {

if (temperature[i] < average)

System.out.println(temperature[i] + "

below average.");

else if (temperature[i] > average)

System.out.println(temperature[i] + "

above average.");

else //temperature[i] == average

System.out.println(temperature[i] + " the

average.");

}// end for

26

Example

System.out.println("Have a nice week.");

}// end main

}// end class

27

Arrays as Parameters

Passing/Returning Arrays of Primitive types

to/from methods

§ Passing an array element is like passing any

other variable. Eg:

double d = Math.sqrt(mark[2]);

// Primitive passed by value: the value cannot be

// changed by the method

28

Arrays as Parameters

§ Passing a whole array is also possible:
public static double avg(int[] arr) {

int total = 0;

for (int i=0; I < arr.length; i++)

total = total + arr[i];

return (double)total/arr.length;

}

29

Arrays as Parameters

§ The caller then uses:

System.out.print(“The average mark is “);

System.out.println(avg(mark));

§ In this example, the array mark is passed as

parameter to the method avg which returns

the average value of numbers stored in the

array

§ Within the method avg, the array is referred
to with the name arr

30

Arrays as Parameters

§ Note that the [brackets] appear in the

definition of the method and not in the

method call

§ Also note that passing a whole array to a

method is done via pass by reference (as

with other objects) and so that the method is

allowed to change the values in the array

§ This is useful (for example, if you want to re-

arrange or sort the values in the array) but

be careful

31

Example: ReturnArrayDemo
/** Program to demonstrate a method returning an

array */

import java.util.Scanner;

public class ReturnArrayDemo {

public static void main(String arg[]) {

Scanner keyboard = new Scanner(System.in);

System.out.println("Enter score on exam 1:");

int firstScore = keyboard.nextInt();

int[] nextScore = new int[3];

int i;

for (i = 0; i < nextScore.length; i++)

nextScore[i] = firstScore + 5 * i;

32

Example: ReturnArrayDemo

double[] averageScore;

double averageScore =

averageArray(firstScore, nextScore);

for (i = 0; i < nextScore.length; i++) {

System.out.println("If your score on

exam 2 is " + nextScore[i]);

System.out.println("Your average will be

" + averageScore[i]);

}

} // end main

33

Example: ReturnArrayDemo

public static double[] averageArray(int

firstScore, int[] nextScore) {

double[] temp=new double[nextScore.length];

for (int i = 0; i < temp.length; i++)

temp[i]=average(firstScore,nextScore[i]);

return temp;

} // end averageArray

public static double average(int n1, int n2){

return (n1 + n2)/2.0;

} // end average

} // end class ReturnArrayDemo

34

Arrays in Objects

§ It is permitted and is very common to have

arrays as instance variables in objects

§ Eg:

§ a student might have an array of marks

§ a tour operator has an array of guides

§ an alphabet has an array of letters

§ a letter has an array of dots (for printing)

§ a questionnaire has an array of questions

§ a polygonal shape has an array of vertices

§ etc.

35

Arrays in Objects

§ Eg: in the class Student:

private String familyName;

private String[] otherNames;

private long studentNumber;

private int[] componentMarks;

private char grade;

36

Objects in Arrays

§ It is permitted and is very common to have

arrays of objects (as opposed to primitive

values)

§ Eg:

§ an array of guides

§ an array of products

§ an array of questions

§ an array of vertices

§ an array of students

§ etc.

37

Objects in Arrays

§ Eg: suppose that we have a class Student

available. A client can use this as follows:

Student[] pupil = new Student[50];

// declares a Student array type variable pupil,

// creates a Student array object of size 50 and makes

// pupil refer to this object

§ Now

pupil[0], pupil[1], ..., pupil[49]

are all variables that can refer to Student objects

38Remember: Initialize

Elements

§ But beware!!

pupil[0], pupil[1], ..., pupil[49]

// are all null reference variables: none of them

// actually refer to any Student objects yet

§ If we called:

pupil[0].writeDetails();

§ or even:

pupil[0].enterDetails();

§ then we would get a NullPointerException

39Remember: Initialize

Elements

§ Before calling any methods on Student objects

you have to create some Student objects. Eg:

for (int i=0; i<pupil.length; i++)

pupil[i] = new Student();

// that is using the default constructor from the

// Student class for each of the 50 objects

§ Then you can call:

for (int i=0; i<pupil.length; i++){

System.out.println("Next student’s details.");

pupil[i].enterDetails();

}

40

Example: Student Class

// Student.java

// example Student class with an array of marks

import java.util.Scanner;

public class Student {

private String name;

private int[] mark;

public Student() {

name = "No name yet.";

mark = null;

}

41

Example: Student Class

public void enterDetails() {

Scanner keyboard = new Scanner(System.in);

System.out.print("Name:");

name = keyboard.nextLine();

System.out.print("Number of components:");

int noc = keyboard.nextInt();

mark = new int[noc];

for(int i = 0;i < noc;i++) {

System.out.println("Enter mark for " +(i+1)

+ "th component:");

mark[i]= keyboard.nextInt();

}

}

42

Example: Student Class

public void writeDetails() {

System.out.println("Name:" + name);

System.out.println("Number of components:"

+ mark.length);

for(int i = 0;i < mark.length;i++)

System.out.println("Mark for " + (i+1)

+ "th component:" + mark[i]);

System.out.println("That's all.");

}

43

Example: Student Class

public int total() {

int sum = 0;

for(int i = 0;i < mark.length;i++)

sum = sum + mark[i];

return sum;

}

}// end class Student

44

Example: Client Class
//StudentClient.java

// example of client program using the Student class

// and making an array of students

import java.util.Scanner;

public class StudentClient {

public static void main(String[] args) {

// array of student objects, currently null

Student[] pupil;

// array of total marks, currently null

int[] tot;

// array of letter grades, currently null

char[] grade;

45

Example: Client Class

// The above arrays are an example of parallel

// arrays

int nops=0;

Scanner keyboard = new Scanner(System.in);

System.out.println("Welcome to class mark

helper.");

System.out.println("Please enter number of

pupils:");

// length of array

nops = keyboard.nextInt();

// create array of type Student; refer to Student

// objects

pupil = new Student[nops];

46

Example: Client Class

// create array of ints to store total marks

tot = new int[nops];

// create an array of chars to store grades

grade = new char[nops];

System.out.println("Enter students' details.");

for (int i = 0;i < pupil.length;i++) {

// very important !!!

pupil[i] = new Student();

pupil[i].enterDetails();

tot[i] = pupil[i].total();

System.out.println("Total mark for that"

+ " student is "+ tot[i]);

}// end for

47

Example: Client Class

double avg = findClassAv(tot);

System.out.println("Pass mark is " + avg);

System.out.println();

System.out.println("Here’s the results.");

for (int i = 0;i < pupil.length;i++) {

if (tot[i] >= avg) grade[i] = 'P';

else grade[i] = 'F';

pupil[i].writeDetails();

System.out.println("Final grade for that" +

" student is "+ grade[i]);

}

48

Example: Client Class

System.out.println("Thank you, BYE.");

}//end of main

public static double findClassAv(int[] arr) {

int sum = 0;

for (int i =0;i < arr.length;i++)

sum = sum + arr[i];

return (double)sum/arr.length;

}//end of findClassAv

}// end class StudentClient

49

Example: Output

/* Sample test run:

Welcome to class mark helper.

Please enter number of pupils: 2

Please enter students' details.

Name: J Blogg

Number of components: 3

Enter mark for 1th component: 60

Enter mark for 2th component: 70

Enter mark for 3th component: 80

Thank you.

The total mark for that student is 210

50

Example: Output

Name: A N Other

Number of components: 3

Enter mark for 1th component: 75

Enter mark for 2th component: 85

Enter mark for 3th component: 90

Thank you.

The total mark for that student is 250

Pass mark is 230.0

51

Example: Output

Here are the results.

Name: J Blogg

Number of components: 3

Mark for 1th component: 60

Mark for 2th component: 70

Mark for 3th component: 80

That's all.

The final grade for that student is F

52

Example: Output

Name: A N Other

Number of components: 3

Mark for 1th component: 75

Mark for 2th component: 85

Mark for 3th component: 90

That's all.

The final grade for that student is P

Thank you for using class mark helper.

*/

53

Checking Arrays for Equality
§ Arrays are like objects as far as = = and !=

are concerned

§ These equality tests will compare the

memory addresses of two objects, not the

data values that they hold

§ If marks and sums are arrays of the same

type, then you can ask:

§ if (marks == sums) ...

§ but they are only equal if both variables refer

to the same object in memory

54

Checking Arrays for Equality

§ Eg: if you created one object and made

marks refer to it:

int[] marks = new int[10];

for (int i=0; i<10; i++)

marks[i] = 10-i;

§ and then you wrote:

int[] sums;

sums = marks;

§ The == test will hold in the above case

55

Checking Arrays for Equality

§ So, for example, you can have two arrays of

ints of the same length with the same

numbers in them but they are not equal

(according to ==).

§ To test two arrays for equality you need to

define an equals method that returns true if

and only if the arrays have the same length

and all their corresponding values are equal

§ The code below shows an example of an

equals method

56

Checking Arrays for Equality

public static boolean equals(int[] a, int[] b) {

boolean match = true; // tentatively

if (a.length != b.length) match = false;

else {

int i = 0;

while (match && (i < a.length)) {

if (a[i] != b[i])

match = false;

i++;

}

}

return match;

}

57

Checking Arrays for Equality

§ A method call:

boolean same = equals(marks, sums);

// where marks and sums are int arrays

58

Searching in Arrays

§ There are many techniques for searching an

array for a particular value

§ Sequential search:

§ Start at the beginning of the array and proceed in

sequence until either the value is found or the

end of the array is reached

§ Or, just as easy, start at the end and work backwards
toward the beginning

§ If the array is only partially filled, the search

stops when the last meaningful value has been

checked

59

Searching in Arrays

§ It is not the most efficient method to search an

array but it works and is easy to program

§ Can be performed on both unsorted and sorted

arrays

60

Searching in Arrays
public static boolean search(int[] a, int item){

boolean found = false;

if (a.length > 0) {

int i = 0;

while (!found) && (i < a.length)) {

if (a[i] == item) found = true;

i++;

}

}

return found;

}

61

Searching in Arrays
§ A method call:

boolean itemFound = search(array, num);

if (itemFound)

System.out.println (“The value ” + num + “

exists in the array”);

else

System.out.println (“The value ” + num + “

is not found in the array”);

62

Searching in Arrays

§ It is common to have to find (or select) the

maximum element in an array. Eg:

int indexOfMaxSoFar = 0;

for (int i = 1;i < arr.length;i++)

if (arr[i] > arr[indexOfMaxSoFar])

indexOfMaxSoFar = i;

indexOfMax = indexOfMaxSoFar;

63

Searching in Arrays

§ Note this assumes that there is at least one

element in the array

§ Variations on this idea will find the minimum

element, or the second biggest, etc.

§ Notice that we make about 100 comparisons

to find the maximum element in a list of 100

numbers, etc.

64

Sorting Algorithms

§ It is also very common to have to sort a

whole array of values into some order

(numeric, alphabetical), including having to

sort an array of complex objects into order

according to a complex ordering

relationship

§Eg: sort by surname and then by given name (for

people with the same surname, etc)

§ This is a very important problem in

computing and it has been well studied

65

Sorting Algorithms

§ It can be complicated and there are several

general approaches. Eg:

§ bubble sort

§ insertion sort

§ selection sort

§ quick sort

§ It is good practice for a beginner

programmer to make a working sorting

program; it is not too hard

66

Sorting Algorithms

§ However, the easiest approaches give

inefficient programs

§ Eg: bubble sort might take 1 million moves to

sort 1,000 entries

§ If program speed is more important than

programmer effort (and debugging time,

etc.) then use quicksort which will take

about 10,000 moves to sort 1,000 entries

67

Selection Sort

§ One of many algorithms for sorting data

items in ascending or descending order

§ Selection sort method:

§ Repeat

§ Find the largest item in the unsorted array

§ Swap it with the last item in the unsorted

array

§ Reduce the unsorted array size by 1

§ Until the array is sorted

68

Selection Sort

§ Array to sort

69

Selection Sort

§ In the above example, there are four passes

needed to sort a list of five data items

§ A variation on the above method is to find

the smallest item in the unsorted array, swap

it with the first item in the unsorted array,

reduce the unsorted array size by 1

§ Repeat until the array is sorted

70

Selection Sort

// SelectSortV1.java

// To sort an array using Selection Sort

public class SelectSortV1 {

public static void main(String[] args) {

int[] anArray =

{98,76,65,105,45,1,199,15,88,100};

// sort the array in ascending order:

SortArrayBySelection (anArray);

// output the sorted numbers:

System.out.println("Sorted numbers are:");

for (int i = 0;i < anArray.length;i++)

System.out.println(anArray[i]);

System.out.println("End program - Bye.");

} // end main

71

Selection Sort

public static void SortArrayBySelection(int[]

arrayToSort) {

int indexOfLargest, last, temp;

for (last = arrayToSort.length-1;last >= 1;

last--) {

indexOfLargest = 0;

// find index of largest in unsorted array

for (int i = 1;i <= last;i++)

if (arrayToSort[i] >

arrayToSort[indexOfLargest])

indexOfLargest = i;

// end if

// end i for

72

Selection Sort

// swap largest with last

temp = arrayToSort[last];

arrayToSort[last] =

arrayToSort[indexOfLargest];

arrayToSort[indexOfLargest] = temp;

} // end outer for

} // end method SortArrayBySelection

}//end of class SelectSortV1

73

Selection Sort

/* Output

The sorted numbers are:

1

15

45

65

76

88

98

100

105

199

End of program - Bye.

*/

74

Insertion Sort

§ Another example of an easy algorithm to sort

an array of integers of into ascending order:
for i = 1 to arrayLength-1

temp = arr[i]

j = 0

while (temp > arr[j])

j = j+1

end while

for k=i downto j

arr[k] = arr[k-1]

end k for

arr[j] = temp

end i for

75

Insertion Sort

§ Each element is copied and inserted into the

correct position in the array

§ After the ith pass through the loop-body the

first i+1 elements are in order

§ During the ith pass, the value arr[i] is put in

its right place amongst the first i+1 elements

by finding the place and then moving all the

rest of the sorted values along one place:

that is, arr[i] is inserted in its right place

77

Insertion Sort

§ EXERCISE IN TOPIC 7

§ Write down the array contents at every step

during the sorting of the values, 12, 18, 2, -4, 17,

12 using insertion sort

§ Note down how many comparisons were made

between values

78

Bubble Sort
§ Also known as sinking sort because the

smaller values in the array gradually bubble

their way towards the top of the array

(towards index 0), if sorting in ascending

order

§ This sorting involves several passes through

the array

§ On each pass, successive pairs are

compared

§ If the pairs are in decreasing order they are

swapped

80

Bubble Sort

// bubblesort.java

// To sort an array using Bubble Sort

public class bubblesort {

public static void main(String[] args) {

int[] anArray ={10,9,8,7,6,5,4,3,2,1.0.-1};

// sort the array in ascending order:

SortArrayByBubbleSort(anArray);

// output the sorted numbers:

System.out.println("The sorted numbers are:");

for (int i = 0;i < anArray.length;i++)

System.out.println(anArray[i]);

System.out.println("End program: Bye.");

} // end main

81

Bubble Sort

public static void SortArrayByBubbleSort(

int[] arrayToSort) {

// number of passes

for(int i = 1;i <arrayToSort.length;i++) {

// perform one pass

for(int j=0;j<arrayToSort.length-1;j++)

// perform one comparison

if (arrayToSort[j]>arrayToSort[j+1])

swap (arrayToSort, j, j+1);

} // end i for

} // end method SortArrayByBubbleSort

82

Bubble Sort

public static void swap (int[]a, int first,

int second)

{

int temp;

temp = a[first];

a[first] = a[second];

a[second] = temp;

} // end method swap

}//end of class bubblesort

83

Bubble Sort

/* Output

The sorted numbers are:

-1

0

1

2

3

4

5

6

7

8

9

10

End of program - Bye.

*/

84

Another Searching Algorithm:

Binary Search
§ Binary Search:

§ Can only be performed on sorted arrays

§ Much faster than linear searching but more complex
§ The search item is compared against the value of

middle element of the array

§ If search item < middle element of array, search is

restricted to first half of the array, and so on …

§ If search item > middle element of array, search
second half of the array, and so on …

§ If search item = middle element, search is complete

§ Thus, each subsequent pass divides the array by

half

85

Another Searching Algorithm:

Binary Search

/** Binary Search searches a sorted array

Assumes the array is sorted in ascending order. If

search is successful, an index of the array where

target key is found will be returned, otherwise the

value -1 will be returned */

public int binarySearch(int arr[], int key) {

int first = 0;

int last = ar.length - 1;

int mid;

while (first <= last) {

mid = (first + last) / 2;

86

Another Searching Algorithm:

Binary Search

if (key == arr[mid]) // match found

return mid; // exit

else if(key < arr[mid]) // search low end

last = mid - 1;

else //search high end of array

first = mid + 1;

}// end while

return -1; // match not found

}// end binarySearch

87

Multi-Dimensional Arrays

§ These are arrays with more than one index

§ The number of dimensions = number of indexes

§ Arrays with more than two dimensions are a

simple extension of two-dimensional (2-D)

arrays

§ Java allows multi-dimensional arrays to be

used.

§ An array is n-dimensional if it uses n indexes

§ Up to now we have been studying one-

dimensional arrays

88

Multi-Dimensional Arrays
§ A 2-D array corresponds to a table or grid

§ One dimension is the row

§ The other dimension is the column

§ Cell = an intersection of a row and column

§ An array element corresponds to a cell in the

table

§ The syntax for 2-D arrays is similar to 1-D

arrays:

Base_Type[][] arrayName = new

Base_Type[intExp1][intExp2];

89

Multi-Dimensional Arrays
§ Eg: declare a 2-D array of ints named

table, the table is to have ten rows and six

columns:

int[][]table = new int[10][6];

§ To access a component of a 2-dimensional

array:

arrayName[indexExp1][indexExp2];

// where:

intExp1, intExp2 >= 0

indexExp1 = row position

indexExp2 = column position

90

Multi-Dimensional Arrays
§ Eg:

table[1][2] = 0;

// initialises the cell (element) in the second row and

// third column of table to zero

§ Usage: Often we want to store values

according to a more complex indexing system.

Eg:
§ The time of the ith competitor in the jth race

§ The rainfall on the dth day of the mth month of

the yth year

§ The value in the rth row and cth column of the

tth table in the bth book of tables

91

Multi-Dimensional Arrays

§ The examples above are 2, 3 and 4

dimensional respectively

§ Eg:
int[][] matrix = new int[20][10];

for (int row=0;row<20;row++)

for(int column=0;column <10;column++)

matrix[row][column] = row*column;

92

Multi-Dimensional Arrays

§ Eg:

int[][][] rain = new int[31][12][100];

// initialise all elements of array rain to zero

for (int i=0;i < 31;i++)

for (int j=0;j < 12;j++)

for (int k=0;k < 100;k++)

rain[i][j][k] = 0;

// display the value of one element of array rain

System.out.println("Rainfall on the second of

January 26 is " + rain[1][0][62] + " cm");

93

Multi-Dimensional Arrays

§ The indexed variables (array elements) for

multi-dimensional arrays are just like

indexed variables for 1-d arrays, except that

they have multiple indexes

94

/** Displays a 2-D table showing how interest rates

affect bank balances. From Savitch (7th ed) pp.579-583

*/

public class InterestTable2 {

public static final int ROWS = 10;

public static final int COLUMNS = 6;

public static void main(String[] args) {

int[][] table = new int[ROWS][COLUMNS];

int row, col;

for (row = 0; row < ROWS; row++)

for (col = 0; col < COLUMNS; col++)

Example

95

table[row][col]=

getBalance(1000.00,row+1,

(5 + 0.5 * col));

System.out.println("Balances for Various

Interest Rates");

System.out.println("Compounded Annually");

System.out.println("(Rounded to Whole Dollar

Amounts)");

System.out.println("Years 5.00% 5.50% 6.00%

6.50% 7.00% 7.50%");

System.out.println();

showTable(table);

}// end main

Example

96

/** Pre-condition: Array displayArray has ROWS rows and

COLUMNS columns

Post-condition: Array contents displayed with $ signs

*/

public static void showTable(int[][] anArray) {

int row, column;

for (row = 0;row < ROWS;row++) {

System.out.print((row + 1) + " ");

for (col = 0;col < COLUMNS;col++)

System.out.print("$" +

anArray[row][column] + " ");

System.out.println();

}

}// end showTable

Example

97

/** Returns the balance in an account after a given

number of years and interest rate with an initial

balance of startBalance. Interest is compounded

annually. The balance is rounded to a whole

number.*/

public static int getBalance(double

startBalance, int years, double rate) {

double runningBalance = startBalance;

int count;

for (count = 1;count <= years;count++)

runningBalance=runningBalance*(1+rate/100);

return (int)(Math.round(runningBalance));

}// end getBalance

}// end class InterestTable2

Example

98

OUTPUT (from InterestTable2):
Balances for Various Interest Rates

Compounded Annually

(Rounded to Whole Dollar Amounts)

Years 5.00% 5.50% 6.00% 6.50% 7.00% 7.50%

1 $1050 $1055 $1060 $1065 $1070 $1075

2 $1103 $1113 $1124 $1134 $1145 $1156

3 $1158 $1174 $1191 $1208 $1225 $1242

4 $1216 $1239 $1262 $1286 $1311 $1335

5 $1276 $1307 $1338 $1370 $1403 $1436

6 $1340 $1379 $1419 $1459 $1501 $1543

7 $1407 $1455 $1504 $1554 $1606 $1659

8 $1477 $1535 $1594 $1655 $1718 $1783

9 $1551 $1619 $1689 $1763 $1838 $1917

10 $1629 $1708 $1791 $1877 $1967 $2061

Example

99

§ In Java multi-dimensional arrays are

implemented using 1-d arrays

§ That is, multidimensional arrays are arrays of

arrays

§ With this knowledge, we can use the length

instance variable to process multi-

dimensional arrays

§ For example, the following code from the
main method in class InterestTable2

Implementation of

Multi-Dimensional Arrays

100

for (row = 0;row < ROWS;row++)

for (col = 0;col < COLUMNS;col++)

table[row][col] =

computeBalance(1000.00, row+1,

(5 + 0.5*column));

// can be written as

for (row = 0;row < table.length;row++)

for(col = 0;col < table[row].length;col++)

table[row][col] =

computeBalance(1000.00, row+1,

(5 + 0.5*column));

Implementation of

Multi-Dimensional Arrays

101

§ This means that table is actually a 1-d array

of length 10, and each of the 10 indexed
variables table[0] to table[9] is a 1-d array

of length 6

§ Thus the array table is an array of arrays

Implementation of

Multi-Dimensional Arrays

102

§ Its declaration

int[][] table = new int[10][6];

is equivalent to the following:

int[][] table;

table = new int[10][];

table[0] = new int[6];

table[1] = new int[6];

.

table[9] = new int[6];

Implementation of

Multi-Dimensional Arrays

103

§ Since a 2-d array in Java is an array of

arrays, there is no need for each row to have

the same number of elements

§ That is, rows can have different number of

columns

§ Such arrays are called ragged arrays

Implementation of

Multi-Dimensional Arrays

104

§ Eg:

int[][] raggedTable;

raggedTable = new int[3][];

raggedTable[0] = new int[2];

raggedTable[1] = new int[5];

raggedTable[2] = new int[7];

Implementation of

Multi-Dimensional Arrays

105

// TwoDimArrayV2.java modified from Deitel and Deitel

// First dimension (rows) represents number of students

// Second dimension (columns) represents number of

scores

// per student

public class TwoDimArrayV2 {

public static void main(String[] args) {

int scores[][] = {{57,74,55,67},

{35,60,62,54},

{73,82,95,87}};

// 3 students, 4 scores per student

int students, minScore, maxScore;

Another Example of 2-D

Arrays

106

displayArray (scores); // output the array

// find the minimum and the maximum scores

minScore = findMinimum(scores);

maxScore = findMaximum(scores);

System.out.println("Lowest score: " + minScore

+ "\nHighest score: " + maxScore + "\n");

// find and display the average score

students = scores.length; // no of students

for (int i = 0;i < students;i++)

System.out.println("Average for student "+i

+ " is " + findAverage(scores[i]));

System.out.println ("\nEnd of program - bye.");

} // end main

Another Example of 2-D

Arrays

107

// find the minimum score

public static int findMinimum(int[][]

studentArray)

{

int min = 100;

int students, exams;

students = studentArray.length;

exams = studentArray[0].length;

for(int i = 0;i<students;i++) // each student

for (int j = 0;j < exams;j++) // each grade

if (studentArray[i][j] < min)

min = studentArray[i][j];

return min;

}// end findMiniumum

Another Example of 2-D

Arrays

108

// find the maximum grade

public static int findMaximum(int[][]

studentArray)

{

int max = 0;

for(int i = 0;i < studentArray.length;i++)

// for each student

for(int j = 0;j<studentArray[i].length;j++)

// for each grade

if (studentArray[i][j] > max)

max = studentArray[i][j];

return max;

} // end findMaximum

Another Example of 2-D

Arrays

109

// avg score for particular student (or set of scores)

public static double findAverage(int

setOfScores[])

{

int total = 0;

double average;

for (int i = 0;i < setOfScores.length;i++)

total = total + setOfScores[i];

average = (double)total/setOfScores.length;

return average;

} // end findAverage

Another Example of 2-D

Arrays

110

// builds up array in string variable and displays it

public static void displayArray(int[][]

studentArray) {

// used to align column heads

String output = " ";

for (int i=0;i<studentArray[0].length;i++)

// no of columns

output = output + "[" + i + "] ";

Another Example of 2-D

Arrays

111

for (int i=0;i<studentArray.length; i++) {

// for each row

output = output+"\nscores[" + i + "] ";

for(int j=0;j<studentArray[0].length;j++)

output=output+studentArray[i][j]+" ";

} // end for

System.out.println("\nThe array is:\n");

System.out.println(output);

} // end displayArray

} // end class TwoDimArray

Another Example of 2-D

Arrays

112

/* OUTPUT

The array is:

[0] [1] [2] [3]

scores[0] 57 74 55 67

scores[1] 35 60 62 54

scores[2] 73 82 95 87

Lowest score: 35

Highest score: 95

Average for student 0 is 63.25

Average for student 1 is 52.75

Average for student 2 is 84.25

End of program - bye.

*/

Another Example of 2-D

Arrays

End of Topic 6

